首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3194篇
  免费   315篇
  国内免费   136篇
化学   154篇
晶体学   1篇
力学   786篇
综合类   42篇
数学   1970篇
物理学   692篇
  2024年   1篇
  2023年   44篇
  2022年   45篇
  2021年   71篇
  2020年   121篇
  2019年   92篇
  2018年   85篇
  2017年   103篇
  2016年   103篇
  2015年   94篇
  2014年   137篇
  2013年   240篇
  2012年   141篇
  2011年   194篇
  2010年   157篇
  2009年   212篇
  2008年   191篇
  2007年   196篇
  2006年   181篇
  2005年   171篇
  2004年   149篇
  2003年   149篇
  2002年   95篇
  2001年   99篇
  2000年   86篇
  1999年   70篇
  1998年   83篇
  1997年   50篇
  1996年   50篇
  1995年   25篇
  1994年   45篇
  1993年   25篇
  1992年   30篇
  1991年   29篇
  1990年   15篇
  1989年   15篇
  1988年   4篇
  1987年   9篇
  1986年   5篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1957年   1篇
  1936年   1篇
排序方式: 共有3645条查询结果,搜索用时 78 毫秒
81.
A higher‐order unsplit multi‐dimensional discretization of the diffuse interface model for two‐material compressible flows proposed by R. Saurel, F. Petitpas and R. A. Berry in 2009 is developed. The proposed higher‐order method is based on the concepts of the Multidimensional Optimal Order Detection (MOOD) method introduced in three recent papers for single‐material flows. The first‐order unsplit multi‐dimensional Finite Volume discretization presented by SPB serves as foundation for the development of the higher‐order unlimited schemes. Specific detection criteria along with a novel decrementing algorithm for the MOOD method are designed in order to deal with the complexity of multi‐material flows. Numerically, we compare errors and computational times on several 1D problems (stringent shock tube and cavitation problems) computed on 2D meshes with the second‐ and fourth‐order MOOD methods using a classical MUSCL method as reference. Several simulations of a 2D shocked R22 bubble in the air are also presented on Cartesian and unstructured meshes with the second‐ and fourth‐order MOOD methods, and qualitative comparisons confirm the conclusions obtained with 1D problems. These numerical results demonstrate the robustness of the MOOD approach and the interest of using more than second‐order methods even for locally singular solutions of complex physics models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
82.
83.
The HLLEM scheme is a popular contact and shear preserving approximate Riemann solver that is known to be plagued by various forms of numerical shock instability. In this paper, we clarify that the shock instability exhibited by this scheme is primarily triggered by the spurious activation of the antidiffusive terms present in the first and third Riemann flux components on the transverse interfaces adjoining the shock front due to numerical perturbations. These erroneously activated terms are shown to counteract the favorable damping mechanism provided by its inherent HLL-type diffusive terms, causing an unphysical variation of the conserved quantity ρu both along and across the numerical shock. To prevent this, two distinct strategies are proposed termed as S elective W ave M odification and A nti D iffusion C ontrol. The former focuses on enhancing the quantity of the favorable HLL-type dissipation available on these critical flux components by carefully increasing the magnitudes of certain nonlinear wave speed estimates, while the latter focuses on directly controlling the magnitude of these critical antidiffusive terms. A linear perturbation analysis is performed to gauge the effectiveness of these cures and to estimate a von Neumann–type stability bounds on the CFL number associated with their use. Results from a variety of classic shock instability test cases show that the proposed strategies are able to provide excellent shock stable solutions even on grids that are highly elongated across the shock front without compromising the accuracy on inviscid contact or shear dominated viscous flows.  相似文献   
84.
骆信  吴颂平 《力学学报》2019,51(6):1927-1939
WENO-ZWENO-Z$+\!$格式的性能提升依赖于新增项的作用,该项的作用是在WENO-Z格式的基础上进一步增大欠光滑子模板上的权重. 系数$\lambda$被设置用来调控该项的作用, 以避免负耗散. 本文指出了WENO-Z$+\!$格式的缺陷,其所采用$\lambda $的取值方式既不能充分发挥格式的潜力, 也未完全消除负耗散;提出$\lambda $的值应随当地流场数据变化,方能充分发挥新增项在降低数值耗散、提高分辨率上的潜力. 基于此,本文重新设计了$\lambda $的计算公式,该公式能自适应地调控新增项的作用: 只在欠光滑子模板上的权重容易过度增大的地方削弱该项的作用,以避免负耗散; 在其他地方则充分发挥新增项的作用,最大限度增大欠光滑子模板上的权重, 提高格式的分辨率.将使用该系数公式的新格式命名为WENO-Z++, 并对其数值性能进行了系统的研究.理论分析表明, 新格式在间断处具有基本无振荡(essentially non-oscillatory,ENO)特性和更低的数值耗散. 对近似色散关系(approximate dispersion relation,ADR)的研究表明,新格式有效地避免了因过度增大欠光滑子模板上的权重而带来的负耗散,其频谱特性也得到了显著提升.本文还推导了使新格式在极值点处也能保持最优阶的精度的参数设置.一系列求解Euler方程的数值试验表明,新格式的激波捕捉能力和对复杂流场结构的分辨率都显著优于原WENO-Z$+\!$格式.}  相似文献   
85.
In this article, we consider a system of nonlinear singularly perturbed differential equations with two different parameters. To solve this system, we develop a weighted monotone hybrid scheme on a nonuniform mesh. The proposed scheme is a combination of the midpoint scheme and the upwind scheme involving the weight parameters. The weight parameters enable the method to switch automatically from the midpoint scheme to the upwind scheme as the nodal points start moving from the inner region to the outer region. The nonuniform mesh in particular the adaptive grid is constructed using the idea of equidistributing a positive monitor function involving the solution gradient. The method is shown to be second order convergent with respect to the small parameters. Numerical experiments are presented to show the robustness of the proposed scheme and indicate that the estimate is optimal.  相似文献   
86.
This paper presents a novel mass conservative, positivity preserving wetting and drying treatment for Godunov‐type shallow water models with second‐order bed elevation discretization. The novel method allows to compute water depths equal to machine accuracy without any restrictions on the time step or any threshold that defines whether the finite volume cell is considered to be wet or dry. The resulting scheme is second‐order accurate in space and keeps the C‐property condition at fully flooded area and also at the wet/dry interface. For the time integration, a second‐order accurate Runge–Kutta method is used. The method is tested in two well‐known computational benchmarks for which an analytical solution can be derived, a C‐property benchmark and in an additional example where the experimental results are reproduced. Overall, the presented scheme shows very good agreement with the reference solutions. The method can also be used in the discontinuous Galerkin method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
87.
In this paper, we propose a model based on a new contravariant integral form of the fully nonlinear Boussinesq equations in order to simulate wave transformation phenomena, wave breaking, and nearshore currents in computational domains representing the complex morphology of real coastal regions. The aforementioned contravariant integral form, in which Christoffel symbols are absent, is characterized by the fact that the continuity equation does not include any dispersive term. A procedure developed in order to correct errors related to the difficulties of numerically satisfying the metric identities in the numerical integration of fully nonlinear Boussinesq equation on generalized boundary‐conforming grids is presented. The Boussinesq equation system is numerically solved by a hybrid finite volume–finite difference scheme. The proposed high‐order upwind weighted essentially non‐oscillatory finite volume scheme involves an exact Riemann solver and is based on a genuinely two‐dimensional reconstruction procedure, which uses a convex combination of biquadratic polynomials. The wave breaking is represented by discontinuities of the weak solution of the integral form of the nonlinear shallow water equations. The capacity of the proposed model to correctly represent wave propagation, wave breaking, and wave‐induced currents is verified against test cases present in the literature. The results obtained are compared with experimental measures, analytical solutions, or alternative numerical solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
88.
In this paper, we propose a new methodology for numerically solving elliptic and parabolic equations with discontinuous coefficients and singular source terms. This new scheme is obtained by clubbing a recently developed higher‐order compact methodology with special interface treatment for the points just next to the points of discontinuity. The overall order of accuracy of the scheme is at least second. We first formulate the scheme for one‐dimensional (1D) problems, and then extend it directly to two‐dimensional (2D) problems in polar coordinates. In the process, we also perform convergence and related analysis for both the cases. Finally, we show a new direction of implementing the methodology to 2D problems in cartesian coordinates. We then conduct numerous numerical studies on a number of problems, both for 1D and 2D cases, including the flow past circular cylinder governed by the incompressible Navier–Stokes equations. We compare our results with existing numerical and experimental results. In all the cases, our formulation is found to produce better results on coarser grids. For the circular cylinder problem, the scheme used is seen to capture all the flow characteristics including the famous von Kármán vortex street. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
89.
This paper introduces a vertex‐centered linearity‐preserving finite volume scheme for the heterogeneous anisotropic diffusion equations on general polygonal meshes. The unknowns of this scheme are purely the values at the mesh vertices, and no auxiliary unknowns are utilized. The scheme is locally conservative with respect to the dual mesh, captures exactly the linear solutions, leads to a symmetric positive definite matrix, and yields a nine‐point stencil on structured quadrilateral meshes. The coercivity of the scheme is rigorously analyzed on arbitrary mesh size under some weak geometry assumptions. Also, the relation with the finite volume element method is discussed. Finally, some numerical tests show the optimal convergence rates for the discrete solution and flux on various mesh types and for various diffusion tensors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号